Possibility for Proactive Anomaly Detection

Apr 27, 2025·
Jinsung Jeon
,
Jaehyeon Park
Sewon Park
Sewon Park
,
Jeongwhan Choi
,
Minjung Kim
,
Noseong Park
· 0 min read
Abstract
Time-series anomaly detection, which detects errors and failures in a workflow, is one of the most important topics in real-world applications. The purpose of time-series anomaly detection is to reduce potential damages or losses. However, existing anomaly detection models detect anomalies through the error between the model output and the ground truth (observed) value, which makes them impractical. In this work, we present a \textit{proactive} approach for time-series anomaly detection based on a time-series forecasting model specialized for anomaly detection and a data-driven anomaly detection model. Our proactive approach establishes an anomaly threshold from training data with a data-driven anomaly detection model, and anomalies are subsequently detected by identifying predicted values that exceed the anomaly threshold. In addition, we extensively evaluated the model using four anomaly detection benchmarks and analyzed both predictable and unpredictable anomalies. We attached the source code as supplementary material.
Type
Publication
In Proceedings of the ICLR 2025 Workshop on I Can’t Believe It’s Not Better: Challenges in Applied Deep Learning